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Orthogonal group over finite fields

The orthogonal group of index n over a finite field with q
elements is defined by

On(q) := {A ∈ GL(n, q)|AAT = In}.

[Janusz] The orthogonal groups On := On(2) are generated as
follows

1 for 1 ≤ n ≤ 3, On = Pn,
2 for n ≥ 4, On = 〈Pn,Tu〉,

where Pn is the permutation group of n × n matrices, u is a binary
vector of Hamming weight 4 and Tu is the transvection defined by

Tu : Fn
2 −→ Fn

2

x 7→ (x.u)u.

Reference :
[1] G. J. Janusz,“Parametrization of self-dual codes by orthogonal
matrices,” Finite Fields Appl., Vol. 13, No. 3,(2007) 450–491.
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Notation and Definitions

Let q = pm for some prime p and some positive integer m. Let
θ = p−1

2 ∈ Fp if p 6= 2 and θ = 1 otherwise. Let α, β ∈ Fq\{0}
such that α2 + β2 = 1 and
v = (α− 1)e1 + βe2,w = −βe1 + (α− 1)e2. Let
u = e1 + e2 + e3 + e4 if n ≥ 4, where {e1, . . . , en} is the
canonical basis of Fn

q. Define two linear maps

Tu,θ : Fn
q −→ Fn

q, Tα,β : Fn
q −→ Fn

q

x 7→ θ(x.u)u x 7→ x + (x.v)e1 + (x.w)e2.

Denote

Tn(q) :=

{
〈Pn,Tα,β〉 if n ≤ 3,

〈Pn,Tα,β,Tu,θ〉, otherwise.
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Table: Orders |Tn(q)| and |On(q)| for 3 ≤ q ≤ 16, n = 4, 5

q |T4(q)|[1] |O4(q)|[2] |T5(q)|[1] |O5(q)|[2]

3 384 1152 103680 103680
4 3840 3840 979200 979200
5 384 28800 18720000 18720000
7 225792 225792 553190400 553190400
8 258048 258048 1056706560 1056706560
9 1036800 1036800 6886425600 6886425600

11 3484800 3484800 51442617600 51442617600
13 9539712 9539712 274075925760 274075925760
16 16711680 16711680 1095199948800 1095199948800

References :
[1] W. Bosma and J. Cannon, Handbook of Magma Functions,
Sydney, 1995.
[2] F. MacWilliams, “Orthogonal matrices over finite fields,” Amer.
Math. Monthly 76 (1969) 152–164.
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Generation of On(q)

On(3) = 〈Pn,Tu,θ〉 for n ≥ 6.

Conjecture : for q > 3,On(q) = 〈Pn,Tα,β,Tu,θ〉 = Tn(q) for
n ≥ 4.
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Linear codes

An [n, k] code over Fq is a k-dimensional subspace of Fn
q.

The distance of x and y in Fn
q is d(x, y) := |{i : xi 6= yi}|.

An [n, k] code with minimum distance d is denoted by
[n, k , d ] code

The dual of C is C⊥ := {x ∈ Fn
q : x .y :=

∑n
i=1 xiyi = 0}.

A linear code C is called self-orthogonal if C ⊂ C⊥ and
self-dual if C = C⊥.

A linear code C is called linear complementary dual (LCD) if
C ∩ C⊥ = {0}
An [n, k , d ] code is called Maximum Distance Separable (
MDS) if

d = n − k + 1
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Fact

Let C be a linear code of length n over Fq with its parity check
matrix written in the systematic form

H =
(
In A

)
,

where In is the identity matrix and A is a square matrix of index n.
Then

C is self-dual if and only if AAT = −In.



Orthogonal group Self-dual codes Linear complementary dual codes Z2m generalized Boolean functions

First construction

Let q ≡ 1 (mod 4). Fix α ∈ Fq such that α2 ≡ −1 (mod q). Then
a matrix Gn of the following form :

Gn =
(
In αL

)
, (1)

where L ∈ On(q), generates a self-dual [2n, n] code.
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First construction continued

Let q ≡ 3 (mod 4). Fix α, β ∈ Fq such that α2 + β2 ≡ −1

(mod q) and D0 =

(
α β
−β α

)
. Then a matrix Gn of the

following form :
Gn =

(
I2n DnL

)
, (2)

where L ∈ O2n(q),Dn = In ⊗ D0, generates a self-dual [4n, 2n]
code.
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Second construction

Let q ≡ 1 (mod 4). Let Cn be a self-dual code [2n, n, d ] over Fq

with its generator matrix Gn. Fix a, b ∈ Fq such that a2 + b2 ≡ 0
(mod q). Then for any λ1, . . . , λn ∈ Fq, an extended code C̄n of
Cn with the following generator matrix GC̄n

is a self-orthogonal
[2n + 2, n,≥ d ] code :

GC̄n
=



λ1a λ1b
λ2(−b) λ2a

Gn
...

...
λ2i−1a λ2i−1b
λ2i (−b) λ2ia

...
...


. (3)
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Second construction continued

Let q ≡ 1 (mod 4). Let Cn be a self-dual code [2n, n, d ] over Fq

with its generator matrix (In|A). Fix a, b, c , d ∈ Fq such that
a2 + b2 ≡ c2 + d2 ≡ 0 (mod q). Let x be a vector of length n + 2
orthogonal to all extended rows of A such that x .x ≡ 0 (mod q).
Then for any λ1, . . . , λn+1 ∈ Fq, a code C ′n with the following
generator matrix is a self-orthogonal [2n + 4, n + 1] code :

λ1a λ1b λ1c λ1d
λ2(−b) λ2a λ2(−d) λ2c

In A
...

...
...

λ2i−1a λ2i−1b λ2i−1c λ2i−1d
λ2i (−b) λ2ia λ2i (−d) λ2ic

...
...

...
...

0 . . . 0 x λn+1d λn+1(−c)


.

(4)
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Numerical results

Table: Optimal and Best known self-dual codes, M : MDS, A : almost
MDS, ∗ : new parameters

2n/q 3 5 7 11 13 17 19 23 29 31 37 41 43 47
4 M A M M M M M M M M M M M M

6 M M M M M M

8 M M M M M M M M M M M M

10 M M M M M

12 A A M A 6 M M M M M M M M

14 7 7 7

16 8 8 8 8 8 8 8 8
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Numerical results

Table: Optimal and Best known self-dual codes, M : MDS, A : almost
MDS, ∗ : new parameters

2n/q 53 59 61 67 71 73 79 83 89 97 101 103
4 M∗ M∗ M∗ M∗ M∗ M∗ M M∗ M∗ M M∗ M∗

6 M M M M∗ M∗ M∗

8 M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗

10 M∗ M∗ M∗ M∗ M∗ M∗ M∗

12 M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗ M∗



Orthogonal group Self-dual codes Linear complementary dual codes Z2m generalized Boolean functions

Characterization of LCD codes

[Dougherty et al. ] Let u1,u2, . . . ,uk be vectors over a
commutative ring R such that ui .ui = 1 for each i and ui .uj = 0
for i 6= j . Then C = 〈u1,u2, . . . ,uk〉 is an LCD code over R.

[Massey] Let G be a generator matrix for a code over a field.
Then det(GG>) 6= 0 if and only if G generates an LCD code.
References :
[1] S. T. Dougherty, J-L. Kim, B. Ozkaya , L. Sok and P. Sole,“
The combinatorics of LCD codes : Linear Programming bound and
orthogonal matrices,” International Journal of Information and
Coding Theory, to appear
[2] J.L. Massey, Linear codes with complementary duals, Discrete
Mathematics, 106–107, 337–342, 1992.
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Construction of LCD codes from orthogonal matrices

Let A ∈ On(q) and Ak a submatrix obtained from A by keeping k
rows. Then the matrix

G = Ak (5)

generates an LCD code.



Orthogonal group Self-dual codes Linear complementary dual codes Z2m generalized Boolean functions

Construction of LCD codes from orthogonal matrices

Let A ∈ On(q) and Ak a submatrix obtained from A by keeping k
rows. Then for any λ1, . . . , λk ∈ Fq\{0}, the matrix

G = diag(λ1, . . . , λk)Ak (6)

generates an LCD code.
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Recursive construction

Let Cn be an LCD code [n, k , d ] over Fq with its generator matrix
Gn being rows of an orthogonal matrix. Assume that there exist
a, b ∈ Fq\{0} such that a2 + b2 ≡ 0 (mod q). Then for any
λ1, . . . , λn ∈ Fq, an extended code C̄n of Cn with the following
generator matrix GC̄n

is an LCD code [n + 2, k,≥ d ] :

GC̄n
=



λ1a λ1b
λ2(−b) λ2a

Gn
...

...
λ2i−1a λ2i−1b
λ2i (−b) λ2ia

...
...


. (7)
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Matrix product LCD codes

Recall that the matrix-product code C = [C1, . . . ,Cl ]A is a linear
code whose all codewords are matrix product [c1, . . . , cl ]A, where
ci ∈ Ci is an n × 1 column vector and A = (aij)l×m is an l ×m
matrix over Fq. Here l ≤ m and Ci is an [n, ki , di ]Fq code over Fq.
If C1, . . . ,Cl are linear with generator matrices G1, . . . ,Gl ,
respectively, then [C1, . . . ,Cl ]A is linear with generator matrix

G =


a11G1 a12G1 · · · a1mG1

a21G2 a22G2 · · · a2mG2
...

... · · ·
...

al1Gl al2Gl · · · almGl

 .
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Some known results

Let (Ci )1≤i≤l be linear codes over Fq with parameters [n, ki ]
and A be an l ×m matrix of full row rank. Then
C = [C1, . . . ,Cl ]A is an [mn,

∑l
i=1 ki ] code.

Let (Ci )1≤i≤l be linear codes over Fq with parameters [n, ki ]
and A be a non-singular matrix. If C = [C1, . . . ,Cl ]A, then
([C1, . . . ,Cl ]A)⊥ = [C⊥1 , . . . ,C

⊥
l ](A−1)>.
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Characterization of matrix product LCD codes

Let C1,C2, . . . ,Cl be linear codes over Fq. Let A ∈ Ol(q) and
Ā = diag(a1, . . . , al)A with a1, . . . , al ∈ Fq\{0}. Then
C = [C1,C2, . . . ,Cl ]Ā is a matrix product LCD code if and only if
C1,C2, . . . ,Cl are all LCD codes.
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Projection over self-dual basis

Let B = {e0, e1, · · · , e`−1} be a self-dual basis of Fq` over Fq, that
is,

Tr(ei, ej) = δi,j,

where Tr denotes the trace of Fq` down to Fq and δi ,j is the
Kronecker symbol. Define

φB : Fq` −→ F`q,
`−1∑
i=0

aiei 7→ (a0, . . . , a`−1),

and extend φ to Fn
q`

in the natural way. Then
A linear code C of length n over Fq` is LCD if and only if the
linear code φB(C ) of length n` over Fq is LCD.



Orthogonal group Self-dual codes Linear complementary dual codes Z2m generalized Boolean functions

LCD codes from self-orthogonal codes

Assume that there exists an MDS self-orthogonal [n, k] code over
Fq. Then there exists an MDS LCD [n− k , k ′] code for 1 ≤ k ′ ≤ k .
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Existence of MDS LCD codes

1 For any even prime power q = 2m, there exists an MDS LCD
[n, k] code for 1 ≤ n ≤ 2m−1, 1 ≤ k ≤ n.

2 For any odd prime power q there exists an MDS LCD [n, k]
code, for 1 ≤ k ≤ n, with the following conditions.

1 n = (q + 1)/2,
2 q ≡ 1 (mod 4) q ≥ 2(2n) × (2n)2,
3 q = r2 and 2n ≤ r ,
4 q = r2 and 2n − 1 is an odd divisor of q − 1,
5 r ≡ 3 (mod 4) and n = tr for any t ≤ (q − 1)/2.

References :
[1] M. Grassl and T. A. Gulliver, “On Self-Dual MDS Codes” ISIT
2008, Toronto, Canada, July 6 –11, 2008
[2] L. F. Jin and C. P. Xing, New MDS self-dual codes from
generalized Reed-Solomon codes, arXiv :1601.04467v1, 2016.
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More existence of MDS LCD codes

Let q = pm,m > 1 for some prime p, n|q− 1 and k ≤ b(n− 1)/2c.
Then there exists an MDS LCD [n − k , k ′] code for 1 ≤ k ′ ≤ k .
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Optimal LCD codes from random sampling

Over F4 Over F7 Over F11 Over F25

[8, 2, 6]F4 [8, 2, 7]F7 [8, 2, 7]F11 [8, 2, 7]F25

[8, 3, 5]F4 [8, 3, 6]F7 [8, 3, 6]F11 [8, 3, 6]F25

[8, 4, 4]F4 [8, 4, 5]F7 [8, 4, 5]F11 [8, 4, 5]F25

[8, 5, 3]F4 [8, 5, 4]F7 [8, 5, 4]F11 [8, 5, 4]F25

[8, 6, 2]F4 [8, 6, 3]F7 [8, 6, 3]F11 [8, 6, 3]F25

[8, 7, 2]F4 [8, 7, 2]F7 [8, 7, 2]F11 [8, 7, 2]F25

[9, 2, 7]F4 [9, 2, 7]F7 [9, 2, 8]F11 [9, 2, 8]F25

[9, 3, 6]F4 [9, 3, 6]F7 [9, 3, 7]F11 [9, 3, 7]F25

[9, 4, 5]F4 [9, 4, 5]F7 [9, 4,≥ 5]F11 [9, 4, 6]F25
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Optimal LCD code from projection over self-dual basis

Over F4 Over F2 Over F8 Over F2

[12, 2, 9]F4 [24, 4,≥ 11]F2 [7, 4, 4]F8 [21, 12,≥ 4]F2

[12, 3, 8]F4 [24, 6,≥ 9]F2 [7, 5, 3]F8 [21, 15,≥ 3]F2

[12, 4, 7]F4 [24, 8, 8]F2 [8, 1, 8]F8 [24, 3, 13]F2

[12, 8, 4]F4 [24, 16, 4]F2 [8, 2, 7]F8 [24, 6,≥ 9]F2

[12, 9, 2]F4 [24, 18,≥ 3]F2 [8, 5, 4]F8 [24, 15, 4]F2

Over F27 Over F3 Over F2m Over F2

[5, 1, 5]F27 [15, 3, 9]F3 [5, 3, 3]F27 [35, 21,≥ 5]F2

[5, 2, 4]F27 [15, 6,≥ 6]F3 [6, 5, 2]F27 [42, 35,≥ 3]F2

[5, 3, 3]F27 [15, 9, 4]F3 [6, 5, 2]F28 [48, 40,≥ 3]F2

[6, 1, 6]F27 [18, 3,≥ 11]F3 [6, 5, 2]F29 [54, 45,≥ 3]F2

[6, 2, 5]F27 [18, 6,≥ 8]F3 [6, 5, 2]F210 [60, 50,≥ 3]F2

[6, 3, 4]F27 [18, 9, 6]F3 [6, 5, 2]F212 [72, 60,≥ 3]F2

[6, 4, 3]F27 [18, 12, 4]F3
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Commercial Break

Introducing our new book ! ! ! !
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Results on
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Codes and Rings is a systematic review of the literature focusing on codes over 
rings and rings acting on codes. Since the breakthrough works on quaternary codes 
in the 1990s, two decades of research have moved the field far beyond its original 
periphery. This book fills this gap by consolidating results scattered in the literature, 
addressing classical as well as applied aspects of rings and coding theory. New 
research covered by the book encompasses skew cyclic codes, decomposition theory 
of quasi-cyclic codes and related codes, and MDS convolutional codes over rings. 
Primarily suitable for ring theorists at the PhD level engaged in application research, 
and coding theorists interested in algebraic foundations, the work is also valuable to 
computational scientists and working cryptologists in the area.

Key Features

•   Consolidates 20+ years of research in one volume, helping researchers save 
time in the evaluation of a disparate literature. 

•   Reviews decomposition of quasi-cyclic codes under ring action. 

•   Evaluates the ideal and module structure of skew-cyclic codes. 

•   Supports applications in data compression, space time coding, code division 
multiple access, spread spectrum, and PAPR reduction.
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Z4−bent functions

A generalized Boolean function f : Fn
2 7→ Zq, for q integer.

For q = 4, the set of all such functions will be denoted by Qn.

The (complex) sign function of f is F (x) := (i)f (x).

The quaternary Walsh-Hadamard transform Hf (u) of f is
Hf (u) :=

∑
x∈Fn

2
(−1)x ·uF (x). In matrix terms Hf (u) = HnF .

A function f ∈ Qn, is bent if |Hf (u)| = 2n/2 for all u ∈ Fn
2.

A bent quaternary function is said to be regular if there is
an element f̂ of Qn, such that its sign function satisfies
Hf (u) = 2n/2F̃ .

If, furthermore, f = f̂ , then f is self-dual bent . Similarly, if
f = f̂ + 2 then f is anti self-dual bent .
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Z4−Reed-Mueller codes

There are two quaternary generalizations of Reed-Mueller codes in
Hammons et al.
The codes QRM(r ,m) are obtained by Hensel lifting from the
binary Reed-Mueller codes.
The codes ZRM(r ,m) are obtained by a multilevel construction
from the RM codes. Symbolically,
ZRM(r ,m) = RM(r − 1,m) + 2RM(r ,m).
We require a third one, introduced in Davis and Jedwab.
Consider codes of length 2m, generated by evaluations of
quaternary Boolean functions on the 2m points of Fm

2 . The code
RM4(r ,m) is generated by the monomials of order at most r . It

contains 4
∑r

j=0 (mj ) codewords and has both Hamming and Lee
distance equal to 2m−r

As pointed out in Borges et al. (2008),
RM4(r ,m) = ZRM(r + 1,m), for r ≤ m − 1.
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Pairs of SD bent functions vs SD Z4− bent functions

Assume F = a + bi is the sign function of a quaternary self-dual
bent function, with a, b reals. There is a pair of binary self-dual
bent functions given by their sign functions G ,H as

G = a + b,

K = a− b.

Conversely, every pair G ,H of binary self-dual bent functions
produces a quaternary self-dual bent function in that way.
⇒ There is no self-dual or anti-self-dual bent quaternary Boolean
function in odd number of variables.
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Pairs of regular bent functions vs regular Z4−bent functions

Assume F = a + bi is the sign function of a regular quaternary
bent function, with a, b reals. There is a pair of binary bent
functions g , k given by their sign functions G ,H as

G = a + b,

K = a− b.

Conversely, every pair g , k of binary bent functions produces a
regular quaternary bent function in that way.
⇒There is no regular bent quaternary Boolean function in odd
number of variables.
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Connection with the Gray map

A connection with the Gray map of Hammons et al. 1994 is
established as follows.
Assume that f = r + 2s is quaternary Boolean function with r , s
Boolean functions. Then g = s, and k = r + s.
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Maiorana-McFarland type

A general class of quaternary bent functions is the following
quaternary analogue of the so-called Maiorana-McFarland class.
Consider all functions of the form

2x · φ(y) + g(y)

with x , y dimension n/2 variable vectors, φ any permutation in

Fn/2
2 , and g arbitrary quaternary Boolean. In the following

theorem, we consider the case where φ ∈ GL(n/2, 2).
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Maiorana-McFarland type ct’d

A Maiorana-McFarland function is self-dual bent (resp. anti
self-dual bent) if g(y) = b · y + ε and φ(y) = L(y) + a where L is
a linear automorphism satisfying L× Lt = In/2, a = L(b), and a
has even (resp. odd) Hamming weight.
The code of parity check matrix (In/2, L) is self-dual and (a, b) one
of its codewords. Conversely, to the ordered pair (H, c) of a parity
check matrix H of a self-dual code of length n and one of its
codewords c can be attached such a Boolean function.
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Dillon function type

As usual, make the convention that 1
0 = 0.

Assume G0 and G1 to be balanced Boolean function of m variables,
with G0(0) = G1(0) = 0, and satisfying

∑
t∈F2m

iG0(t)+2G1(t) = 0.
The quaternary Boolean function f in 2m variables defined by

f (x , y) = G0(x/y) + 2G1(x/y)

is bent with dual

f̂ (x , y) = G0(y/x) + 2G1(y/x).
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Algorithms I

Theorem Let n ≥ 2 be an even integer and Z be arbitrary in
{±1,±i}2n−1

. Define Y := Z + 2Hn−1

2n/2 Z . If Y is in {±1,±i}2n−1
,

then the vector (Y ,Z ) is the sign function of a self-dual bent
function in n variables. Moreover all self-dual bent functions
respect this decomposition.
Gives a search algorithm called SDB(n, k)
to compute all self dual quaternary bent Boolean function of
degree at most k in n variables,
analogous algorithm ASDB(n, k) for quaternary anti-self-dual bent
Boolean function in n variables, of degree at most k .
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Algorithms II

Algorithm SDB(n, k)

1 Generate all Z = iz with z in RM4(k , n − 1).

2 Compute all Y as Y := Z + 2Hn−1

2n/2 Z .

3 If Y ∈ {±1,±i}2n−1
output (Y ,Z ), else go to next Z .

Similarly Algorithm ASDB(n, k)

1 Generate all Z = iz with z in RM4(k , n − 1).

2 Compute all Y as Y := Z − 2Hn−1

2n/2 Z .

3 If Y ∈ {±1,±i}2n−1
output (Y ,Z ), else go to next Z .
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Complexity

To show the memory space savings with comparison with the brute
force exhaustive search of complexity 42n , the search space is only

of the size of the Reed-Muller code that is 22(
∑k

j=0 (n−1
j ))

.
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Numerics

We classify quaternary self-dual bent functions under the
extended orthogonal group. Recall that two n−variable functions
f and f ′ are equivalent if for any x ∈ Fn

2, f
′(x) = f (Lx) + c for

some L ∈ On, c ∈ Z4.
We give the complete classification for all the functions in two
and four variables ,
the Gray image (the ordered pair (g , k) above) of their equivalence
classes
and the classification of all quadratic functions in six variables .
In accordance with our theory, the total number of quaternary
self-dual bent functions is the square of that of self-dual bent
functions in Carlet et al., namely 22 in the case of two variables,
and 202 in the case of four variables.
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Classification method

Classification :

1 Searching all the functions using Algorithm SDB(n, k)

2 Rejecting isomorphism under extended orthogonal group On

Result : There are 1, 8 non-equivalent quaternary self-dual bent
functions in 2, 4 variables respectively and 45 non-equivalent
quadratic self-dual bent functions in 6 variables.
⇒ classification of quaternary self-dual bent functions of degree

four in eight variables is intractable in practice (too many orbits).
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Numerical results

Table: Quaternary self-dual bent functions in 2 and 4 variables

Representative from equivalence class Size
2 2 2 0 4

Number of quaternary self-dual bent functions in two variables 4

Representative from equivalence class Size
0 2 2 0 2 0 2 0 2 2 0 0 0 0 0 0 24
2 0 2 2 2 2 0 2 2 2 0 2 0 2 0 0 16
0 3 3 0 3 1 3 1 3 3 1 1 0 1 1 0 48
0 3 3 0 3 0 2 1 3 2 0 1 0 1 1 0 24
3 1 2 3 2 3 1 3 2 2 0 3 0 3 0 0 96
1 3 2 1 2 1 3 1 2 2 0 1 0 1 0 0 96
2 1 2 3 2 3 0 3 3 2 1 2 1 2 1 0 48
0 2 2 0 2 1 3 0 2 3 1 0 0 0 0 0 48

Number of quaternary self-dual bent functions in four variables 400
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Numerical results cont’

Table: Gray image (s, r + s) of the equivalence classes

Binary self-dual bent function g Binary self-dual bent function k

1 1 1 0 1 1 1 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0
1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0
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Z2m generalized Boolean functions

A generalized Boolean function (gBF) f : Fn
2 7→ Zq, for

integer q integer. In this work q = 2m, for some integer
m > 1.The set of all such gBFs will be denoted by GBn.
The (complex) sign function of f is F (x) := (ω)f (x), where
ω stands for a complex root of unity of order 2m.

The Walsh-Hadamard transform Hf (u) of the Boolean
function f , evaluated in a point u of the domain Fn

2, is defined
as Hf (u) =

∑
x∈Fn

2
(−1)x .uF (x). In matrix terms

Hf (u) = HnF .

A function f ∈ GBn, is said to be bent if |Hf (u)| = 2n/2 for all
u ∈ Fn

2.

A bent gBF is said to be regular if there is an element f̂ of
GBn, such that its sign function satisfies Hf (u) = 2n/2f̂ .

If, furthermore, f = f̂ , then f is self-dual bent . Similarly, if
f = f̂ + 2m−1, then f is anti-self-dual bent .
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Definition

Definition : A system of 2s boolean functions f0, · · · , f2s−1, with
respective sign functions F0, · · · ,F2s−1, is said to have the
Hadamard property if

Hs(F0, · · · ,F2s−1)>

is equal to ± some column of Hs .
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Z2m− regular bent gBF functions

If the sign function of the regular bent gBF f is ωf =
∑k−1

i=0 aiω
i ,

then the k BF Gi for i = 0, · · · , k − 1 defined by

(G0, · · · ,Gk−1)> = Hm−1(a0, · · · , ak−1)>

are bent BF with the Hadamard property, and so is the system of
their duals. Conversely, given k BF G0, · · · ,Gk−1, with the
Hadamard property, with duals also with Hadamard property, the
gBF of sign function

∑k−1
i=0 aiω

i with the ai ’s are defined by the
above system is regular bent.
⇒ There is no regular bent Z2m -valued gBF in odd number of
variables.
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Z2m− self-dual bent gBF functions

If the sign function of the self-dual bent gBF f is ωf =
∑k−1

i=0 aiω
i ,

then the k self-dual BFs Gi for i = 0, · · · , k − 1 defined by

(G0, · · · ,Gk−1)> = Hm−1(a0, · · · , ak−1)>

are bent BF with the Hadamard property. Conversely, given k BF
G0, · · · ,Gk−1, with the Hadamard property,the gBF of sign
function

∑k−1
i=0 aiω

i where the ai ’s are defined by the above system
is self-dual bent.
⇒ There is no self-dual bent Z2m -valued gBF in odd number of
variables.
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Symmetries

Let f be a quaternary regular bent function in n variables. Then
g(x) = f (xM + a) + c, where M ∈ GL(n, 2), a ∈ Fn

2 and c ∈ Z4 is
also regular bent.
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Classification of quaternary regular bent functions

By applying our decomposition technique, we can now classify all
quaternary regular bent functions upto four variables.
Result : Up to affine equivalence, there are 2, 7 non-equivalent

quaternary regular bent functions in 2, 4. The number of
quaternary reqular bent functions is the square of that of binary
case and more precisely there are 82, 8962, (3502× 13888)2 in
2, 4, 6 variables respectively.
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Numerical results

Table: Quaternary regularbent functions in two and four variables

Representative from equivalence class Size

2101 16
2000 48

Number of quaternary regular bent functions in two variables 64

2000202220000200 1792
3100312231111311 80640
2101202230010211 129024
3001202231000301 215040
3100303221011300 322560
2101212321010301 26880
2011202220000211 26880

Number of quaternary regular bent functions in four variables 802816



Orthogonal group Self-dual codes Linear complementary dual codes Z2m generalized Boolean functions

Thank you very much for your attention
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